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conformal field theory 

P KlebantS and I Vassilevats 
7 Laboratory for Surface Science and Technology, University of Maine, Orono, ME 04469, 
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Abstrsct. By use of conformal field theory, we calculate universal results for the energies 
of curved domain boundaries at two-dimensional critical points in circular and rectangular 
regions. This work extends the theory of finite-size effects at criticality, complementing 
previous exact results for the energies of domain boundaries in infinite strips. 

1. Introduction 

The theory of finite-size effects near critical points has been extensively studied via 
scaling arguments, numerical methods, exact model results and conformal invariance- 
for reviews see [l]  and references therein. In this paper, we consider the effects of 
finite size on domain boundary free energies (also called the interfacial or domain 
wall free energies) in two-dimensional systems at criticality. 

Previous work [2] demonstrates that the (extra) free energy of an excitation in a 
two-dimensional system at criticality is simply related to the correlation function of 
the scaling operators that create it. In particular, boundary operators in the upper half 
plane may be employed to create a domain boundary. The basic statement of conformal 
invariance of correlation functions then allows computation of the corresponding 
energy in a new geometry. Another fundamental tenet of the theory, the operator 
product expansion, may be used to determine the interaction energy of two or more 
such domain boundaries. The consequences of these statements were worked out for 
a particular geometry, namely an infinite strip (with edges). 

Domain boundaries created in this fashion are often referred to as 'pinned' or 
'anchored', since their ends are fixed. Realizations are possible by appropriately 
changing the microscopic degrees of freedom at the edge of the region. For example, 
in an king model, constraining the spins to be up over part of the edge and down 
over the rest will induce a domain boundary running between the points where the 
spin direction changes. Other realizations include stepped surface systems with phase 
transitions involving surface reconstruction, and boundaries arising from kinks in the 
terrace edge. 

In this paper, we calculate the energies of domain boundaries in two fully finite 
geometries, the circle and the rectangle (with arbitrary aspect ratio). This extends our 
previous results for the strip. 

5 Present address: Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, 
USA. 
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In section 2 we review the basic equations used to find the energy. In section 3 we 
employ them to find the energy of a single boundary and the interaction energy of 
two boundaries in a circle. Section 4 treats the rectangular geometry. Section 5 
summarizes our results. To our knowledge, the results in this paper are new, with the 
single exception noted in section 4. 

2. Domain boundary energies 

In this section we recall the method by which domain boundary energies may be 
obtained [2]. Consider first the upper half plane, with conformally invariant (uniform) 
boundary condition and boundary operators $(xi) at positions xi on the real axis. 
These operators mediate a change in the boundary conditions at x, [3,4]. Then the 
(extra) free energy (in units of k,T)  of the corresponding excitation is simply 

AF=-In($(x,)$(x,) . _  .). (1) 

The energy in any geometry obtainable by conformal mapping of the upper half plane 
may be determined by use of equation (1) and the basic statement of conformal 
invariance [5], 

($(XI). , .) = I W ’ ( X l ) l A ~ ~  , ( I L ( W l ) .  . . ). (2) 

In equation (2), w ( z )  is any analytic function, and A the scaling dimension of $. Since 
there is only a single Virasoro algebra operative in the half plane [6], only a single 
scaling dimension and one independent coordinate enter equation (2) [7]. It should 
be noted that, for certain operators and certain (finite) transformations, there is the 
possibility of a sign change in equation (2), e.g. under inversions [7]. This does not 
apply to the cases we treat below. In making use of equation (2), it is often convenient 
to express z =  z ( w )  and compute the derivative via w ’ ( z )  = l / z ’ ( w ) .  

A single boundary (figure 1) is created by a pair of operators at x, and x2, so that, 
for properly normalized operators, 

(JI(x1)$(x2))= (3) 

where x12-~x,-x21. In calculating the energy from equations (1) and (3), one must 
be aware that creaiing domain boundaries in a specific modei generaiiy invoives 
non-normalized operators, so the RHS of equation (3) is multiplied by a non-universal 
constant. Our formulae for single domain energies correspondingly ignore a non- 
universal but geometry-independent additive constant. However, this constant does 
not affect the interaction energies. 

A A 

B A 
X I  A 

2 

Figure 1. Domain boundary in the upper half plane created by boundary operators at x, 
and x2. A and B refer to the two domains, or, on the real axis, the two types of boundary 
conditions. Although our energy formulae apply to any pair of boundary operators and 
any anformally invariant boundary condition, the geometry of the boundary may differ 
from that illustrated here or in the other figures [Z]. 
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A pair of domain walls may be created by four boundary operators at points 
xi < x2 < x, < x4. The total energy then depends on a four-point correlation function. 
If at least one pair of points is near each other, the situation simplifies, since the 
(boundary) operator product expansion may be used. For x , ~ < <  x , ~ ,  one finds [21 that 
the leading term in the interaction energy of the two domains is always attractive, and 
given as 

where A, is the dimension of the most relevant operator appearing in the expansion 
of + with itself, x, a point in the neighbourhood of x, and C the appropriate (boundary) 
operator product expansion coefficient. The form of Ez in the w-coordinates follows 
on simply substituting x =  x(w)  in equation (4), since the scale factors in equation (2) 
subtract out of any interaction energy. 

The energy of one or more domain boundaries in an infinite strip of width L (with 
edges) was determined 121 by employing equations (1)-(4) with the transformation 
w = L / r  In(z), which maps the upper half plane into the strip. In what follows, we 
calculate corresponding results for a circle of radius R and rectangles of arbitrary 
aspect ratio by use of the appropriate conformal maps. 

Domain boundary energies may also be computed by integrating their derivatives 
wirn respect IO m c  posiriuna oi me Duunuary operators. Tnese derivaiives are in iurn 
given by contour integrals of the (expectation value of) the stress tensor with boundary 
operators present. This general method was used to compute the universal part of the 
free energy of a rectangular region [SI. For domain boundaries, the appropriate stress 
tensor in the half plane may be computed from the conformal Ward identity [9], or 
directly by consideration of the effects of the boundary conditions [ 101. This programme 
has been explicitly carried out for one or two boundaries in the strip geometry [ l l ]  
and gives (as expected) the same results as the simpler method described here. 

-~~.., -.-~~..A...L. -.-!A C I I ~  L . ~ ~ ~ . > - ~ ~  

3. Circular geometry 

The upper half plane may be mapped into a circle of radius R (figure 2) by means of 
a projective map, for instance 

- iz+l  
z- i  

w = R - .  

w 

Figure 2. Domain boundary in a circle 
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Since the form of the correlation function is invariant under projective transformations, 
it follows immediately from equations (1) and (3) that the energy of a domain boundary 
in the circle is 

ECi,= E , / , = Z A  In(d )  ( 6 )  
where d is the distance between the boundary end-points on the circle and E , / 2  is the 
energy in the half plane. 

P Kleban and I Vassileva 

Alternatively, equation (6) may be expressed as 

where e,, 8, are the angles of the end-points (the images of xI and x2). Note that 
(assuming A >  O)E,,, increases with angular separation, being maximal for 18’- = T, 

when the points are on a radius. In many cases the boundary in the half plane will he 
a half circle [Z]. Since equation ( 5 )  is projective, the boundary in the circle will also 
follow the arc of a circle. Thus, for a given circle, the energy grows with the boundary 
length. One must distinguish this length dependence from the dependence on length 
scale, here the radius R. Normally, conformally invariant energies are scale-indepen- 
dent. The logarithmic dependence on R is an effect of the trace anomaly (see below). 

Now for a given d, ECi,  is independent of the radius R (however, the condition 
d s 2R must be satisfied). This independence is consistent with the heuristic idea that, 
other factors being the same, correlations increase with the possible number of paths 
connecting the points. According to equation (l), the corresponding energy will 
decrease, which may be regarded as an effect of the increase of entropy. For the circle, 
as R increases, the number of paths crossing to one side of the line connecting the 
two end-points goes up, while the number involving the other side decreases, with the 
two tendencies exactly compensating. 

It is also interesting to contrast ECi, with the energy of a ‘bubble’-a boundary 
defined by two points separated by distance d on the same side of an infinite strip of 
width L [Z]: 

E ,  = 2A In [ Fsinh($)].  

Since sinh(x) x for x 3 0, E,,, = E,,2 s E, for any L. This is consistent with the path 
picture since the strip limits the paths available in the half plane. In fact, in two 
dimensions one can show quite generally that limiting the geometry always leads to 
an increase of the boundary energy [12]. 

Using equation (4). we find 

for the interaction energy E2 of two similar boundaries, where we have chosen 
0. = (0 ,  + 02)/2, and ignored correction terms O[(  e2- e,)’], since E2 is small, and 
equation (4) valid, only in the case that at least one boundary is small, e.g. I& -  011 << 1. 
This latter condition clearly arises from the steric constraints of the fully finite 
geometry-one boundary can only avoid the other by being much smaller than R. 
Thus in fact the interaction can only vanish as a power of the domain size, E’= d A t ,  
and the exponential decrease of the interaction with domain separation found in the 
strip [ 2 ]  does not occur. Clearly this will be true in any other finite geometry as well, 
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unless there is a long dimension allowing large separation, as for the rectangles with 
large aspect ratio discussed below. 

4. Rectangular geometries 

4.1. Preliminaries 

The upper half plane may be mapped into a rectangle via the Schwarz-Christoffel 
transformation 

dz 
= j i d ( l  -z2)(1 - k2z2)' 

The points z=*1, *l/kontherealaxisaretransformedintothecornersat w=*K(k),  
*K(k)+iK'(k),  respectively, K and K '  being complete elliptic integrals of the first 
kind with modulus k, 0 < k < 1. The aspect ratio x is then x = K'/2K, which takes on 
all values O <  x<m as kvaries over the allowed range. The inverse Schwarz-Christoffel 
transformation is given by the Jacobian elliptic function 

z = sn(w). (11) 
For simplicity, the results quoted below apply to the rectangle defined by equation 

(10). Corresponding formulae for rectangles of arbitrary size with the same aspect ratio 
x may be obtained via a scale transformation, as illustrated in equation (13). 

The universal term in the energy of the rectangle itself is also known [SI. The 
domain boundary in the rectangle (figure 3) follows a path that may be obtained by 
mapping the boundary in the half plane with equation (10). 

W 
2 

I W 

0: -.._ - 1  r,...-"L l.-.."A"-.:- " --"."..-,- "gums >. ""I,,*,,, YYY"Y.uJ 11. P ,CCL",~,S 

Applying equations (t)-(3), one finds the energy of a single domain boundary in 
the rectangle to be 

where cn and dn are Jacobian elliptic functions, and the points w, lie anywhere on 
the boundary of the rectangle, except for the corners (see below). One can transcribe 
this result into an expression for the energy in a rectangle with the same aspect ratio 
x but differing in size by a scale factor b = L/K '=  L'/ZK by use of the scale transforma- 
tion t = bw. The result is 

Note that the first term on the RHS of equation (13) includes a part proportional to 
In(L). Logarithmic terms of this type also occur in the free energy of finite systems. 
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They are ascribable to a trace anomaly term in the stress tensor at a corner of angle 
0, whereby if we put the corner at z=O, (T)+(c/24z2)[1 -(7r/0)’], with c the central 
charge [X, 131. Such logarithmic terms may be understood via a ‘dimensional resonance’ 
argument 1141. Changing boundary conditions, or equivalently inserting boundary 
operators, also give rise to trace anomaly terms with coefficient 2A [lo], and therefore 
terms logarithmic in the size occur for boundary energies as well [2]. It follows that 
the first term on the RHS of equation (13) is equivalent to the effects of a trace anomaly 
at a corner of an effective angle e,+, that can be computed in terms of A by equating 
free energies. 

4.2. Semi-infinite rectangle 

In what follows, we evaluate equation (12) for various special cases. First we consider 
a semi-infinite rectangle. This allows us to determine the effects of a single end on our 
previous resu!? for the strip [2J On taking the limit k+ l i  K ’ +  T,/& and K + mi s o  
the rectangle approaches an infinite horizontal strip of width 4 2 .  We replace w by 
w - K, so that the coordinate is given relative to the lower left corner of the rectangle. 
This emphasizes the effects of the end relative to the infinite strip. Making use of the 
formulae for sn(w - K), etc., and the expansions of the Jacobian functions for k +  1 
gives 

P Kleban and I Vassileua 

1 /sinh2(wZ-w:! 
E,,,=2Alnjsinh(w2- w,)i-Aln 1 I -\sinh2(w,+ wl) 

Equation (14) is directly comparable to an infinite strip in two cases. First, take w, = U,, 
wz = u2 with U,, u2 real, so both points are on the same long side of the rectangle. 
Then the first term on the RHS of equation (14) is exactly the energy of a single boundary 
(‘bubble’) in an infinite strip of width 7r/2 [2]. The second term in equation (14) is a 
correction term due to the effects of the end of the rectangle. Since U,, u,>O (and 
assuming A>O) the correction is always positive. The confining effects of the end of 
the rectangle act to increase the boundary energy. The corresponding reduction of the 
correlation function is consistent with the reduction in the number of paths, and an 
example of a much more general theorem [12] as in the circular case mentioned. For 
a boundary of fixed width u2 - U,, the correction decreases exponentially as the 
boundary moves away from the end of the rectangle, over a distance set by the width 
of the rectangle. If we take both points on the opposite side of the rectangle, the result 
is the same. If we take one point on each long side, e.g. w I  = U,, w2 = u2+i7r/2, the 
sinh functions in equation (14) are replaced by cosh. The first term on the RHS is then 
the energy of a ‘wall’ in the infinite strip of width ~ / 2 .  The correction is again positive, 
for the same reasons, and decreases exponentially as before. 

A third possibility involves one point on each of two adjacent sides of the rectangle, 
e.g. wI = U,, w2 = iu2, O <  u2 < r J 2 .  Here the energy may be expressed as 

sinh2(u,) + sin2( u2)I2 
sinh(2ul) sin(2u2) 

Eend = A In I[ . 
A fourth case occurs when both points are on the short side of the rectangle, i.e. 
w,=iu, ,  w2=iu2, O<u, ,u2<n/2 .  Here 

By the general result, this energy must be larger than E,,2 for d = u2 - u I .  
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Next we consider the semi-infinite rectangle with one point in a corner. We again 
define the coordinate w with respect to -K, as in equations (14)-(16). As the point 
approaches the corner, the boundary operator o is replaced by a corner operator + 

(17) 

where A, is the dimension of the corner operator. This depends on the corner angle 0 
via A,(0)= (T/0)A, so that A,=2A here, and + vanishes as wA. Our correlation 
functions satisfy this prescription, in all cases. Equation (17) also involves the boun- 
dary-comer expansion coefficient a, a constant which is suppressed in what follows. 

The vanishing of the correlation as one point approaches a corner implies a 
logarithmic divergence of the boundary energy. With one point actually in a comer, 
the boundary is created by the corner operator 4. Then the energy will depend, via 
equation (11, on a (++)correlation function. This we determine, using equation (17), 
as the coefficient of wA. For the semi-infinite strip, letting w,+O,  we find 

[61, e.g. 
$( w )  + aw-A+%#J (0) 

where w2 has been relabelled w. Equation (18) is easily evaluated for w on a long or 
short side of the rectangle. When the rectangle is scaled by a factor b, as above, the 
energy is given by the analogue of equation (13), except that the first term becomes 
(A+A,)ln(b)=3A In(b). For w = h / 2 ,  the other point is in a corner and equation 
(17) must be employed again; the energy depends on a (44) correlation function. 
Using the same prescription gives -2A ln(2). Scaling here gives rise to the term 2Ac In( b). 

4.3. General case 

Next we consider the general case of the rectangle. In the following, the origin is again 
in the centre of the lower side of the rectangle, as in equation (10). The boundary 
energy has already been quoted in equation (12). There are various ways to re-express 
this result. One suggestive form is 

E,,=-Aln I 1 7-7 1 I + A h  1 1- (cs++ds+)*l 
sn- sn, cs- + ds- 

where cs and ds are the Jacobian elliptic functions cn/sn and dn/sn, respectively, and 
+ or - denotes the argument w,+ w2 or w, - w2, respectively. FOT the same separation 
w,- w2, the energy given in equation (19) must exceed that of equation (14), scaled 
to a semi-infinite strip of the same width as the rectangle, as long as neither point in 
the rectangle is closer to an end than either point in the strip. 

If both points are on the horizontal side ('bubble'), E,.,, may simply be taken as 
equation (12) or (19) with wj=ui. For w , = u , ,  wY,=u2+iK'('wall.), it becomes 

This result may be compared to the energy of a 'wall' in a strip of the same width, i.e. 
L = K', which is given by equation (8) with sinh replaced by cosh and d =\U, - u2J [2]. 
According to  the general result mentioned, the energy in the rectangle is always larger 
than in the strip. 
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With wI = ul , w2 = -K + iu2, i.e. a boundary across a corner, we have not found a 
simple expression for E,**. Jacobian elliptic functions of w2 and modulus k are 
expressed as Jacobian elliptic functions of u2 with complementary modulus k '=  m, 
but this leads to a rather involved formula. However, for a 'wall' in the horizontal 
direction, i.e. w, = - K  +iu,. w2 = K +iv2, one finds 

where + and - refer to U, + U? and U, - u2, respectively, and all elliptic functions are 
evaluated at modulus k'. This result describes the same physical situation as equation 
(20), except for the change in dimensions of the rectangle. Thus the two functions 
must be equal for appropriate choices of arguments, moduli and scaling factors. 

Finally, we consider the case of one or both points in a corner. For w1 = - K ,  
proceeding as above, we find 

I cn'(w) 
E,,, = A In ( k " d n ( w ) [ ~ n ( w ) - 1 ] ~  

It is easy to evaluate equation (22) explicitly with w on any of the sides of the rectangle. 
If we put w in the corner K, proceeding as above, we find 

where the 6, = ai(0, T )  are elliptic theta functions, and we have made use of the relation 
k=(6 , /+J2 .  I fwe let w+K+iK ' ,  the result is 

Ecar = -A Inlk(1- k)21 

E,,, = -A In I (:)2 [ 1 - (2)2]21. 
By means of the behaviour of the theta functions under the modular transformation 
T+ r /2  [IS], we may express equations (23) and (24) as 

respectively, where we have set A=;,  and all the +-functions are now evaluated at 
r / 2 .  Equations (25) agree exactly (up to an additive constant) with results for the king 
class in rectangles with fixed boundary conditions obtained via an argument based on 
operator content and symmetry [16]. 

Finally, it is interesting to contrast these last results with the energy of a domain 
boundary in the king modei on a torus defined by insertion of an 'antiierromagnetic 
seam' [17, IS]. For a boundary in the diagonal direction, for instance, one finds 

where k = ( a2/t9$ as before (with the &-functions evaluated at T = m/ n =aspect ratio 
of the torus). In comparing equations (26) and (24) or the second member of equations 
(25) one must remember that the T appearing in equations (24) is twice the aspect 
ratio of the rectangle, and, since the domain boundary on a torus has no end, there 
is no logarithmic term in the size dependence of its energy. 
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5. Conclusions 

By application of conformal field theory we have determined universal results for the 
free energies and interactions of curved domain boundaries at two-dimensional critical 
points in fully finite geometries. In particular, we have studied circular and rectangular 
regions. We have concentrated on the effects of finite size on the energy of a single 
domain boundary, including the influence of comers. Our results extend the theory of 
finite-size effects at criticality, complementing previous work on the energies of domain 
boundaries in infinite strips. 
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